LOGIN
|
REGISTER
Thursday, January 2, 2025
Home
Summaries
Country Summary
Site of Action Summary
Site of Action Table
ALS Mutation Database
Graphs
Chronological Increase in USA
Saving Graphs for PowerPoint
Multiple Resistance within Populations
Weeds Resistant to Many SOA's
Global Maps
Chronological Increase
Resistance by Site of Action
Graph Data for Resistance by SOA
Resistance by SOA listing species
Resistance by SOA and Crop
Resistance by Weed Family
Weed Families by # SOA
Top 15 Weed Species by # SOA
Lifecycle Duration for Resistant Weeds vs Weeds in General
Top 15 Herbicides to Select Resistance
ALS inhibitor mutations
ALS inhibitor Mutations - Residue #
#Herbicides for each of the Top 15 SOA's
Recent Additions
Select Multiple Resistance by Country
Resistant Weeds
By Species
By Crop
By Country
By Herbicide Site of Action
By Individual Herbicide
Add New Case
Add New Case of Resistance
Criterion for Confirmation
Herbicides
Herbicide Classification System
Herbicides by Site of Action
Herbicide Poster
Researchers
Login
Log Out
Edit Your Contact Details
Find Researchers
Register as Researcher
Email me my Password
Change my Password
Literature
Search Reference Database
Add a Document
Add a Reference
E-Books
Herbicide Resistant Phalaris minor in Wheat - India
Management of Resistant Weeds in Rice
Prevención y manejo de malezas resistentes a herbicidas en arroz
Help
About US
FAQ
FAQ
Login
FAQ
About Us
Cite this Site
Add New Case
Add Documents
Summaries
US State Map
European Map
Recent Cases
Countries
Sites of Action
All Species by SOA Table
Herbicides
Glyphosate Resistant Weeds
ALS Mutation Database
Sequence Database
Graphs
Global Maps
Herbicide Poster
Herbicide Classification System
Resistant Weeds
By Site of Action
By Crop
By Species
By Country
By Individual Herbicide
Membership
Register
Retrieve Your Password
Edit Your Contact Details
Change Your Password
Contacts
Researchers
Contact Us
HORSEWEED
(
Conyza canadensis
)
with
GROUP B/2 resistance: (INHIBITION OF ACETOLACTATE SYNTHASE )
Inhibition of Acetolactate Synthase
MUTATION: TRYPTOPHAN 574 to LEUCINE
Horseweed
(
Conyza canadensis
) is a dicot plant in the asteraceae family. A single amino acid substitution from Tryptophan 574 to Leucine has led to resistance to Inhibition of Acetolactate Synthase as indicated in the table below.
Horseweed
Chemical Family
Example Herbicide
Resistance Level
Imidazolinones
Imazethapyr
Resistant > 10 fold
Pyrimidinyl benzoates
Bispyribac-Na
Resistant > 10 fold
Sulfonylureas
Chlorsulfuron
Resistant > 10 fold
Triazolopyrimidine - Type 1
Chloransulam-methyl
Not Determined
Triazolinones
Flucarbazone-Na
Not Determined
NOTE
Authors suggest resistance to pyrithiobac-sodium (a PTB) may be due to something other than, or in addition to, the ALS mutation.
REFERENCES
Matzrafi, M., T. W. Lazar, M. Sibony, and B. Rubin
.
2015
.
Conyza
species: distribution and evolution of multiple target-site herbicide resistances
.
Planta
242
:
259 - 267
.
Conyza canadensis
(CC) and
Conyza bonariensis
(CB) are troublesome weeds around the world. Extensive use of herbicides has led to the evolution of numerous
Conyza
spp. herbicide-resistant populations. Seeds of 91 CC and CB populations were collected across Israel. They were mostly found (86 %) in roadsides and urban habitats, two disturbed habitats that had been dramatically impacted by human activities, thus we classify these species as anthropogenic. Although pyrithiobac-sodium was only used in cotton fields, 90 % of
Conyza
spp. populations were identified as pyrithiobac-sodium resistant, suggesting possible natural resistance to pyrithiobac-sodium. CC21 and CC17
C. canadensis
populations were highly resistant to all tested ALS inhibitors due to a substitution in the
ALS
gene from Trp574 to Leu. They were also atrazine resistant due to a substitution in the
psb
A gene from Ser264 to Gly. The high level of imazapyr and pyrithiobac-sodium resistance observed in the CC10 population was due to an Ala205 to Val substitution. However, high resistance to sulfometuron methyl and pyrithiobac-sodium in population CC6 was due to a point mutation at Pro197 to Ser. All resistant plants of CC21 population showed both
psb
A (Ser264 to Gly) and
ALS
(Trp574 to Leu) substitutions, leading us to the conclusion that the attempt to overcome resistance to one mode of action by overuse of another will most likely lead to multiple herbicide resistance. Furthermore, we concluded that only individuals that carry both mutations could survive the shift between the two modes of action and overcome the fitness cost associated with the PSII resistance.
.
This case was entered by Patrick Tranel Email:
tranel@illinois.edu
PERMISSION MUST BE OBTAINED FIRST if you intend to base a significant portion of a scientific paper on data derived from this site.
Cite this site as:
Heap, I. The International Survey of Herbicide Resistant Weeds. Online. Internet.
Thursday, January 2, 2025
. Available
www.weedscience.org
Copyright © 1993-
2025
WeedScience.org All rights reserved. Fair use of this material is encouraged. Proper citation is requested.
{1}
##LOC[OK]##
{1}
##LOC[OK]##
##LOC[Cancel]##
{1}
##LOC[OK]##
##LOC[Cancel]##