LOGIN
|
REGISTER
Thursday, January 2, 2025
Home
Summaries
Country Summary
Site of Action Summary
Site of Action Table
ALS Mutation Database
Graphs
Chronological Increase in USA
Saving Graphs for PowerPoint
Multiple Resistance within Populations
Weeds Resistant to Many SOA's
Global Maps
Chronological Increase
Resistance by Site of Action
Graph Data for Resistance by SOA
Resistance by SOA listing species
Resistance by SOA and Crop
Resistance by Weed Family
Weed Families by # SOA
Top 15 Weed Species by # SOA
Lifecycle Duration for Resistant Weeds vs Weeds in General
Top 15 Herbicides to Select Resistance
ALS inhibitor mutations
ALS inhibitor Mutations - Residue #
#Herbicides for each of the Top 15 SOA's
Recent Additions
Select Multiple Resistance by Country
Resistant Weeds
By Species
By Crop
By Country
By Herbicide Site of Action
By Individual Herbicide
Add New Case
Add New Case of Resistance
Criterion for Confirmation
Herbicides
Herbicide Classification System
Herbicides by Site of Action
Herbicide Poster
Researchers
Login
Log Out
Edit Your Contact Details
Find Researchers
Register as Researcher
Email me my Password
Change my Password
Literature
Search Reference Database
Add a Document
Add a Reference
E-Books
Herbicide Resistant Phalaris minor in Wheat - India
Management of Resistant Weeds in Rice
Prevención y manejo de malezas resistentes a herbicidas en arroz
Help
About US
FAQ
FAQ
Login
FAQ
About Us
Cite this Site
Add New Case
Add Documents
Summaries
US State Map
European Map
Recent Cases
Countries
Sites of Action
All Species by SOA Table
Herbicides
Glyphosate Resistant Weeds
ALS Mutation Database
Sequence Database
Graphs
Global Maps
Herbicide Poster
Herbicide Classification System
Resistant Weeds
By Site of Action
By Crop
By Species
By Country
By Individual Herbicide
Membership
Register
Retrieve Your Password
Edit Your Contact Details
Change Your Password
Contacts
Researchers
Contact Us
PALMER AMARANTH
(
Amaranthus palmeri
)
with
GROUP B/2 resistance: (INHIBITION OF ACETOLACTATE SYNTHASE )
Inhibition of Acetolactate Synthase
MUTATION: PROLINE 197 to SERINE
Palmer Amaranth
(
Amaranthus palmeri
) is a dicot plant in the amaranthaceae family. A single amino acid substitution from Proline 197 to Serine has led to resistance to Inhibition of Acetolactate Synthase as indicated in the table below.
Palmer Amaranth
Chemical Family
Example Herbicide
Resistance Level
Imidazolinones
Imazethapyr
Not Determined
Pyrimidinyl benzoates
Bispyribac-Na
Not Determined
Sulfonylureas
Chlorsulfuron
Resistant > 10 fold
Triazolopyrimidine - Type 1
Chloransulam-methyl
Not Determined
Triazolinones
Flucarbazone-Na
Not Determined
REFERENCES
Nakka, S., C. R. Thompson, D. E. Peterson, and M. Jugulam
.
2017
.
Target Site–Based and Non–Target Site Based Resistance to ALS Inhibitors in Palmer Amaranth (Amaranthus palmeri).
.
Weed Science
65
:
681 - 689
.
Resistance to acetolactate synthase (ALS)-inhibitor herbicides due to continuous and repeated selection is widespread in many troublesome weed species, including Palmer amaranth, throughout the United States. The objective of this research was to investigate the physiological and molecular basis of resistance to ALS inhibitors in a chlorsulfuron-resistant Palmer amaranth population (KSR). Our results indicate that the KSR population exhibits a high level of resistance to chlorsulfuron compared with two known susceptible populations, MSS and KSS from Mississippi and Kansas, respectively. MSS is highly susceptible to chlorsulfuron, whereas KSS is moderately sensitive. Dose–response analysis revealed that KSR was more than 275-fold more resistant compared with KSS. Nucleotide sequence analysis of the ALS gene from the plants that survived chlorsulfuron treatment revealed the possibility of evolution of both target site–based and non–target site based resistance to ALS inhibitors in the KSR population. The most common mutation (Pro-197-Ser) in the ALS gene associated with resistance to the sulfonylureas in many weed species was found only in 30% of the KSR population. A preliminary malathion study showed that the remaining 70% of resistant plants might have cytochrome P450–mediated non–target site resistance. This is the first report elucidating the mechanism of resistance to ALS inhibitors in Palmer amaranth from Kansas. Presence of both target site– and non–target site based mechanisms of resistance limits the herbicide options to manage Palmer amaranth in cropping systems.
.
This case was entered by Patrick Tranel Email:
tranel@illinois.edu
PERMISSION MUST BE OBTAINED FIRST if you intend to base a significant portion of a scientific paper on data derived from this site.
Cite this site as:
Heap, I. The International Survey of Herbicide Resistant Weeds. Online. Internet.
Thursday, January 2, 2025
. Available
www.weedscience.org
Copyright © 1993-
2025
WeedScience.org All rights reserved. Fair use of this material is encouraged. Proper citation is requested.
{1}
##LOC[OK]##
{1}
##LOC[OK]##
##LOC[Cancel]##
{1}
##LOC[OK]##
##LOC[Cancel]##