LOGIN
|
REGISTER
Thursday, January 2, 2025
Home
Summaries
Country Summary
Site of Action Summary
Site of Action Table
ALS Mutation Database
Graphs
Chronological Increase in USA
Saving Graphs for PowerPoint
Multiple Resistance within Populations
Weeds Resistant to Many SOA's
Global Maps
Chronological Increase
Resistance by Site of Action
Graph Data for Resistance by SOA
Resistance by SOA listing species
Resistance by SOA and Crop
Resistance by Weed Family
Weed Families by # SOA
Top 15 Weed Species by # SOA
Lifecycle Duration for Resistant Weeds vs Weeds in General
Top 15 Herbicides to Select Resistance
ALS inhibitor mutations
ALS inhibitor Mutations - Residue #
#Herbicides for each of the Top 15 SOA's
Recent Additions
Select Multiple Resistance by Country
Resistant Weeds
By Species
By Crop
By Country
By Herbicide Site of Action
By Individual Herbicide
Add New Case
Add New Case of Resistance
Criterion for Confirmation
Herbicides
Herbicide Classification System
Herbicides by Site of Action
Herbicide Poster
Researchers
Login
Log Out
Edit Your Contact Details
Find Researchers
Register as Researcher
Email me my Password
Change my Password
Literature
Search Reference Database
Add a Document
Add a Reference
E-Books
Herbicide Resistant Phalaris minor in Wheat - India
Management of Resistant Weeds in Rice
Prevención y manejo de malezas resistentes a herbicidas en arroz
Help
About US
FAQ
FAQ
Login
FAQ
About Us
Cite this Site
Add New Case
Add Documents
Summaries
US State Map
European Map
Recent Cases
Countries
Sites of Action
All Species by SOA Table
Herbicides
Glyphosate Resistant Weeds
ALS Mutation Database
Sequence Database
Graphs
Global Maps
Herbicide Poster
Herbicide Classification System
Resistant Weeds
By Site of Action
By Crop
By Species
By Country
By Individual Herbicide
Membership
Register
Retrieve Your Password
Edit Your Contact Details
Change Your Password
Contacts
Researchers
Contact Us
WILD RADISH
(
Raphanus raphanistrum
)
with
GROUP B/2 resistance: (INHIBITION OF ACETOLACTATE SYNTHASE )
Inhibition of Acetolactate Synthase
MUTATION: PROLINE 197 to HISTIDINE
Wild Radish
(
Raphanus raphanistrum
) is a dicot plant in the brassicaceae family. A single amino acid substitution from Proline 197 to Histidine has led to resistance to Inhibition of Acetolactate Synthase as indicated in the table below.
Wild Radish
Chemical Family
Example Herbicide
Resistance Level
Imidazolinones
Imazethapyr
Susceptible
Pyrimidinyl benzoates
Bispyribac-Na
Not Determined
Sulfonylureas
Chlorsulfuron
Resistant > 10 fold
Triazolopyrimidine - Type 1
Chloransulam-methyl
Resistant > 10 fold
Triazolinones
Flucarbazone-Na
Not Determined
REFERENCES
Yu Qin ; Zhang XiaoQi ; Abul Hashem ; Walsh, M. J. ; Powles, S. B.
.
2003
.
ALS gene proline (197) mutations confer ALS herbicide resistance in eight separated wild radish (
Raphanus raphanistrum
) populations
.
Weed Science
51
:
831 - 838
.
The biochemical and molecular basis of resistance to acetolactate synthase (ALS)-inhibiting herbicides was investigated in 8 resistant (R) and 3 susceptible (S) wild radish (
Raphanus raphanistrum
) populations. In vitro enzyme assays revealed an ALS herbicide-resistant ALS enzyme in all R populations. ALS enzyme extracted from the shoots of all eight R populations was highly resistant to the ALS-inhibiting sulfonylurea herbicide chlorsulfuron (20- to 160-fold) and the triazolopyrimidine herbicide metosulam (10- to 46-fold) and moderately resistant to metsulfuron (3 to 8-fold). There was little or no cross-resistance to the imidazolinone herbicides imazapyr and imazethapyr. The ALS gene fragment covering potential mutation sites in these populations was amplified, sequenced, and compared. All 8 R populations had point mutations in the codon for the proline residue in Domain A. However, the point mutations varied and encoded 4 different amino acid substitutions: histidine, threonine, alanine, and serine. No nucleotide difference in the DNA sequence of Domains C and D resulting in amino acid substitutions was observed between the R and S populations examined. In addition, a 3- to 5-fold higher ALS-specific activity was consistently observed in all R populations compared with S populations, whereas Northern blot analysis detected a similar level of ALS mRNA, suggesting a possible translational-posttranslational regulation of the enzyme. It is concluded that selection pressure from chlorsulfuron on eight separate wild radish populations has resulted in target site mutation at the same proline residue in the ALS gene. Higher ALS activity also may play a role in the resistance level.
.
This case was entered by Patrick Tranel Email:
tranel@illinois.edu
PERMISSION MUST BE OBTAINED FIRST if you intend to base a significant portion of a scientific paper on data derived from this site.
Cite this site as:
Heap, I. The International Survey of Herbicide Resistant Weeds. Online. Internet.
Thursday, January 2, 2025
. Available
www.weedscience.org
Copyright © 1993-
2025
WeedScience.org All rights reserved. Fair use of this material is encouraged. Proper citation is requested.
{1}
##LOC[OK]##
{1}
##LOC[OK]##
##LOC[Cancel]##
{1}
##LOC[OK]##
##LOC[Cancel]##